
Received 13 April 2025, accepted 2 July 2025. Date of publication 00 xxxx 0000, date of current version 00 xxxx 0000.

Digital Object Identifier 10.1109/ACCESS.2025.3587387

AsymGroup: Asymmetric Grouping and
Communication Optimization for 2D Tensor
Parallelism in LLM Inference
KI TAE KIM , SEOK-JU IM , AND EUI-YOUNG CHUNG , (Member, IEEE)
Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea

Corresponding author: Eui-Young Chung (eychung@yonsei.ac.kr)

This work was supported in part by the National Research Foundation of Korea(NRF) grant funded by the Korea government [Ministry of
Science and Information and Communication Technology (MSIT)] (No.RS-2024-00405495, Plug&Play (P&P) Chiplet Integration
research center), in part by the Technology Innovation Program (No. RS-2024-00420541, 2410000802) funded by the Ministry of Trade,
Industry and Energy of Korea, in part by Institute of Information & communications Technology Planning & Evaluation(IITP) grant
funded by the Korea government (MSIT) (No.2022-0-00050, Development of Processing-in-Memory (PIM) Computing Architecture
based on Data-Flow), and in part by the Samsung Electronics Company, Ltd., Hwaseong, Korea.

ABSTRACT Recent advances in Large Language Models (LLMs), such as GPT and LLaMA, have
demonstrated remarkable capabilities across a wide array of natural language processing tasks. Despite
these successes, efficient inference at scale remains challenging, particularly in heterogeneous computing
environments characterized by variations in GPU counts, and computational capacities across nodes.
Conventional tensor parallelism approaches typically assume homogeneous hardware, resulting in
significant performance degradation under asymmetric conditions. To address this challenge, we propose
AsymGroup, which is an asymmetric 2D tensor parallelism framework that dynamically constructs
groups of uneven sizes based on node- and GPU-level metrics. AsymGroup proportionally allocates both
computational and communication workloads according to individual device capabilities. In addition,
we introduce a formal communication costmodel to accurately quantify bottlenecks and a group optimization
algorithm to systematically determine efficient group configurations. Experimental evaluations demonstrate
that AsymGroup reduces inference latency by up to 26.3% and communication overhead by up to 33.4%
compared to state-of-the-art frameworks, while also maintaining competitive performance under symmetric
conditions.

INDEX TERMS Large language models, inference optimization, tensor parallelism, collective
communication.

I. INTRODUCTION
Large Language Models (LLMs), such as GPT [1] and
LLaMA [2], have become central to natural language
processing, achieving state-of-the-art performance across
diverse tasks. However, these models typically consist of
hundreds of billions to trillions of parameters, generating
substantial intermediate activations during each inference
step that must be retained in memory. Consequently,
executing inference on a single GPU becomes impractical
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because of limitations in memory capacity and computational
throughput, necessitating distributed processing across mul-
tiple GPUs [1], [3], [4], [5].
Various model parallelism strategies have been devel-

oped to address these challenges, notably pipeline paral-
lelism [6] and tensor parallelism [7]. Among these, tensor
parallelism has gained widespread adoption owing to the
favorable trade-off between memory efficiency and execu-
tion speed [6], [7], [8]. However, tensor parallelism requires
frequent synchronization among GPUs and is typically
implemented through collective communication operations
such as All-Reduce. These operations introduce significant

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 1



K. T. Kim et al.: AsymGroup: Asymmetric Grouping and Communication Optimization for 2D Tensor Parallelism

overhead, particularly in multi-GPU systems with limited
interconnect bandwidth [9], [10], [11]. As the number of
GPUs scales, the communication overhead increases dispro-
portionately, emerging as a critical scalability bottleneck.

To mitigate this issue, two-dimensional (2D) tensor
parallelism has been introduced as a scalable alternative.
Unlike 1D tensor parallelism, which confines computation
and communication along a single axis, 2D tensor parallelism
distributes operations across both the row and column dimen-
sions. This dual-axis partitioning effectively balances the
communication traffic and reduces both the communication
volume and latency. Frameworks such as Optimus [12]
and AutoDDL [13] have adopted 2D tensor parallelism to
enhance communication efficiency during LLM inference.
In particular, AutoDDL [13] achieves performance improve-
ments by efficiently coordinating internode and intranode
communication.

Despite these advantages, most existing 2D tensor parallel
frameworks assume uniform group sizes (p = p0 × p1)
and homogeneous GPU configurations [12], [13], [14].
Furthermore, several approaches primarily target encoder-
style architectures that pass both activations and weights,
making them difficult to apply to decoder-based inference,
where only the activation must be exchanged [12], [14].
In addition, asymmetry is prevalent in real-world scenarios,
particularly in cloud and high-performance computing (HPC)
environments [15], [16]. Nodes often differ in GPU count,
memory capacity, and computational performance, creating
heterogeneous configurations that pose substantial chal-
lenges to conventional 2D tensor parallelism schemes.

To address these limitations, we propose AsymGroup,
a novel tensor parallelism framework specifically designed
for heterogeneous GPU environments. AsymGroup partitions
both computational and communication tasks based on the
capabilities of individual GPUs by considering factors such
as computing and memory capacity. Additionally, it relaxes
the symmetry constraints typically imposed on collective
communication, enabling flexible data exchange patterns
that align better with hardware disparities, thus enhancing
scalability. We further introduce a formal communication
cost model that quantifies bottlenecks within the AsymGroup
framework and develop an optimization algorithm to system-
atically determine efficient group configurations. The main
contributions of this study are as follows.

1) We propose AsymGroup, a framework that supports
asymmetric grouping and communication-aware opti-
mization for 2D tensor parallelism in LLM inference.

2) We formulated a detailed communication cost model
and introduced an optimization algorithm to construct
groups that minimized both intergroup and intragroup
bottlenecks.

3) We experimentally validated AsymGroup on large-
scale language models, demonstrating significant
improvements in inference latency and communica-
tion efficiency compared to existing state-of-the-art
methods.

Our experiments confirm that AsymGroup outperforms
existing tensor parallel frameworks in terms of both latency
and communication efficiency under heterogeneous GPU
configurations. Specifically, it achieved up to 26.3% lower
inference latency and up to 33.4% reduced communica-
tion overhead on large-scale models such as GPT-175B
and MT-530B [3]. Furthermore, AsymGroup maintains a
competitive performance under balanced (symmetric) config-
urations, ensuring broad applicability without compromising
efficiency.

The remainder of this paper is organized as follows.
Section II introduces the background of transformer-based
LLM inference and tensor parallelism. Section III discusses
the limitations of the existing 2D tensor parallelism in
heterogeneous environments and motivates the need for
AsymGroup. Section IV surveys the related work. Section V
presents the design and implementation of the proposed
framework, and Section VI provides the evaluation results
under various system configurations. Finally, Section VII
concludes the paper and discusses potential directions for
future work.

II. BACKGROUND
A. TRANSFORMER DECODER BLOCK AND LLM
INFERENCE FLOW
Transformer architectures serve as foundational building
blocks for LLMs such as GPT and LLaMA [1], [2], [8].
As depicted in Fig. 1, each transformer decoder block consists
of fully connected (linear), multi-head attention, and layer
normalization layers.

During LLM inference, the decoder blocks iteratively
generate one token until an end-of-sequence token is
generated. Linear layers typically execute general matrix-
vector multiplication (GEMV) operations, which can benefit
from batch processing when multiple input tokens are
grouped. Conversely, the attention mechanism involves
pairwise interactions among the query (Q), key (K), and
value (V) vectors, limiting its amenability to batching.
In addition, attention complexity scales with sequence
length.

The key and value vectors are stored cumulatively in a key-
value (KV) cache across all generated tokens. For instance,
in GPT-175B with a sequence length of 2048, the KV cache
alone may consume over 18 GB of memory, surpassing the
memory capacity of a single GPU. This memory constraint
restricts batch size during inference, leading to increased
latency. Thus, model parallelism is essential for distributing
both computational tasks and memory-intensive activations
across multiple GPUs.

B. TENSOR PARALLELISM
Tensor parallelism has emerged as an indispensable technique
for distributing LLMs across multiple GPUs, thereby signifi-
cantly benefiting from training and inference. By partitioning
the model parameters and intermediate activations among
devices, tensor parallelism alleviates memory bottlenecks
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FIGURE 1. Structure of a transformer decoder block illustrating linear layers, attention layers, layer normalization steps, and the collective
communication operations (all-gather and reduce-scatter) used in tensor parallelism.

and enhances computational throughput through parallel
execution [7], [8].

However, tensor parallelism inherently necessitates syn-
chronization across GPUs because intermediate computation
results must be exchanged after each partitioned step.
Synchronization is typically implemented through collective
communication. The overhead introduced by these operations
escalates with increasing data volume and is further exac-
erbated by the limited interconnect bandwidth, particularly
across nodes.

Ideally, uniform high-bandwidth interconnects and bal-
anced GPU counts enable ring-based or hierarchical collec-
tive algorithms to minimize communication costs. However,
in practical deployments, the internode bandwidth typically
falls below the intranode bandwidth and hardware hetero-
geneity introduces additional communication imbalances,
leading to pronounced bottlenecks. Consequently, the overall
performance of tensor parallelism is often constrained
by the network bandwidth and collective communication
algorithms.

C. COLLECTIVE COMMUNICATION
Among the collective operations used in tensor parallelism,
All-Reduce plays a critical role by aggregating and dis-
tributing data across GPUs [8], [17], [18]. All-Reduce
typically consists of two sub-operations: reduce-scatter,
which performs distributed reduction across GPUs, and
all-gather, which broadcasts the aggregated results back to
all GPUs. This two-step collective operation may occur
multiple times per decoder block during inference.

Communication overhead primarily depends on the vol-
ume and frequency of data transfers. A simple linear com-
munication model can describe this cost [9], [13], [19], [20],
where α represents the fixed latency per communication step,
β denotes the inverse bandwidth (communication cost per
byte), m is the data volume per step, and c is the number of
communication steps. Thus, the total communication volume
is thus V = m × c, and the overall communication cost
is αc + βV . Given that activation data usually dominate
overall communication latency, this paper primarily focuses
on reducing the total communication volume V .

D. 2D TENSOR PARALLELISM AND COMMUNICATION
OPTIMIZATION
1D tensor parallel methods, such as Megatron-LM, partition
model parameters along a single dimension (e.g., rows

FIGURE 2. Illustration of 2D tensor parallelism, in which model weights
and inputs are partitioned along row and column axes across a k × (G/k)
GPU grid, effectively reducing the per-GPU communication overhead.

or columns of linear layer weights). Although 1D approaches
are straightforward and efficient for parameter distribution,
significant communication overhead arises because of the
frequent All-Reduce operations required to synchronize
activations following partial computations.

To address these limitations, recent frameworks including
Optimus [12] and AutoDDL [13] have introduced 2D
tensor parallelism schemes. In the 2D approach, the model
parameters and activations are partitioned simultaneously
along the row and column axes, enabling each GPU to
handle a smaller subset of data arranged in a two-dimensional
grid. By distributing computation and communication across
two dimensions, the per-device communication volume is
reduced, thereby alleviating bottlenecks.

Fig. 2 conceptually illustrates the 2D tensor parallel
pipeline, where G GPUs are organized into a k × (G/k) grid.
Consider the linear operation O = IX , where input I is
divided column-wise and weight X is partitioned along both
rows and columns. During computation, an all-gather among
GPUs in each row ensures that devices such as GPU0 and
GPU4 receive identical input fragments. Each then performs
a linear operation using its assigned weight sub-block
(e.g., X0 for GPU0, X4 for GPU4). Afterward, a reduce-
scatter among GPUs in the same column, such as those
using X0,X1,X2,X3, assembles the corresponding output O
for each device. Let bh denote the activation data size.
In traditional 1D tensor parallelism, the total communication
volume can be expressed as bh·(G−1)/G. In constrast, for 2D
tensor parallel approaches, the communication volume can be
formally expressed as (1). This formulation highlights how
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FIGURE 3. Challenges posed by asymmetric GPU distributions in 2D
tensor parallelism. In (a) and (b), certain nodes cannot be evenly factored
or have varying GPU counts, causing unassigned or idle GPUs and
communication imbalances. In (c), GPUs with differing performance
characteristics coexist within a single node, introducing potential
bottlenecks when uniform partitioning is attempted.

2D tensor parallelism significantly reduces communication
volume compared to the 1D tensor parallelism.

Vall-gather =
bh
G
(k − 1)

Vreduce-scatter =
bh
G

(
G
k

− 1
)

V2D = Vall-gather + Vreduce-scatter (1)

III. MOTIVATION
State-of-the-art inference for LLMs typically leverages
transformer architectures and tensor parallelism (Section II)
to distribute massive models across multiple GPUs. In dis-
tributed environments, it is well established that inference
performance is significantly constrained by communication
overhead, particularly because of collective operations such
as All-Reduce [9], [10], [11]. Although 2D tensor parallelism
has demonstrated substantial reductions in communication
volume compared to traditional 1D approaches such as
Megatron-LM [7], [8] and has been effectively integrated
into frameworks such as Optimus [12] and AutoDDL [13],
its practical performance often degrades in real-world
deployments. This deterioration primarily arises from hard-
ware heterogeneity.

In modern cloud and HPC environments, hardware asym-
metry is prevalent [15], [16]. Differences in GPU counts
per node, variations in GPU computational capabilities, and
non-uniform internode network bandwidth pose significant
challenges, weakening the assumptions underlying conven-
tional 2D tensor parallelism. This section investigates specific
issues arising under such heterogeneous conditions and
explains why standard 2D parallelization strategies fall short
given LLM-specific workloads and resource constraints.

A. LIMITATIONS OF 2D TENSOR PARALLELISM IN
ASYMMETRIC SYSTEMS
The first key challenge is the uneven distribution of GPUs
across the nodes. Traditional 2D tensor parallelism generally

presupposes a uniform mesh arrangement of GPUs in n× g
grid (where n is the node count and g is the GPUs
per node). However, when nodes have differing numbers
of GPUs or GPU counts that do not factor cleanly into
a grid, straightforward row–column partitioning becomes
problematic. As illustrated in Fig. 3(a) and (b), some nodes
may have unused or surplus GPUs that cannot be effectively
integrated into the communication mesh, thereby signif-
icantly undermining resource utilization and diminishing
the overall efficiency of computation and communication
operations.

The second issue emerges from heterogeneity in GPU
memory capacities and computational throughput. Many
existing 2D tensor-parallel strategies assume uniform GPU
specifications across nodes to streamline communication
patterns, in practice, as shown in Fig. 3(c), nodes often
integrate GPUs with varying computational power or
memory sizes, causing specific nodes to become critical
communication bottlenecks. In addition, certain all-reduce
optimization methods depend heavily on evenly partitioned
data to fully exploit the available bandwidth. However, with
LLM workloads, where compute-intensive attention layers
alternate with linear layers, the resulting uneven workload
distribution can lead to significant performance degradation
if GPU capacities and memory resources vary significantly
among nodes.

B. THE NEED FOR AsymGroup
As highlighted above, the assumptions underpinning the
traditional 2D tensor parallelism do not hold in heterogeneous
computing environments. Fixed group structures optimized
for homogeneous hardware frequently result in performance
degradation when deployed in systems characterized by
uneven resource allocation. Despite these drawbacks, the
inherent advantages of 2D tensor parallelism, particularly
its ability to parallelize communication and distribute data
effectively—remain compelling. Thus, a more flexible and
generalized structural approach is necessary to fully exploit
the benefits of heterogeneous deployments.

To address these limitations, we propose AsymGroup,
a generalized tensor-parallel framework designed explicitly
for heterogeneous GPU environments. AsymGroup dynam-
ically constructs capability-aware groups based on each
node’s GPU count, computational throughput, and memory
capacity, thereby enabling proportionally balanced compu-
tational and communication workloads across the entire
system. Furthermore, we introduced a formal communication
cost model and an optimization algorithm to automate effec-
tive group formation and systematically mitigate bottlenecks
in large-scale deployments.

IV. RELATED WORK
Significant research efforts have been dedicated to addressing
the communication overhead inherent in distributed train-
ing and inference of LLMs. These efforts span multiple
dimensions, including tensor parallelism, communication
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scheduling, and heterogeneity-aware collective communica-
tions. This section provides an overview of representative
approaches, highlighting their limitations in heterogeneous
GPU environments and motivating the need for more flexible
and capability-aware tensor parallel frameworks.

A. 1D TENSOR PARALLELISM
Megatron-LM [7], [8] pioneered 1D tensor parallelism by
partitioning model parameters along a single axis (row
or column), thereby enabling scalable execution across
multiple GPUs. In addition, sequence parallelism has been
proposed to enhance memory efficiency further. However,
these approaches depend heavily on ring-based collective
communication primitives (e.g., NCCL), which can cause
substantial bottlenecks, particularly under limited internode
bandwidth conditions.

B. COMMUNICATION SCHEDULING AND TOPOLOGY
AWARENESS
Another line of research has focused on strategies for
overlapping communication and computation [21], [22], [23],
as well as employing topology-aware scheduling tech-
niques to maximize interconnect utilization [22]. Approaches
leveraging hierarchical collective communication and link
augmentation for mesh or torus network topologies have
also been investigated [24], [25]. However, such techniques
often make low-level hardware-specific assumptions or
require substantial software modifications, thereby limiting
their portability and applicability across diverse computing
infrastructures.

C. HETEROGENEITY-AWARE COLLECTIVE
COMMUNICATION
To accommodate hardware diversity better, several stud-
ies have developed collective communication algorithms
that are explicitly tailored for heterogeneous systems.
FlexReduce [15], for instance, preserves uniform data
partitioning but dynamically reorders communication
sequences based on individual device capabilities. Similarly,
TACOS [16] adapted communication patterns according to
the underlying hardware topology. While these methods offer
improved robustness in heterogeneous environments, they
fundamentally do not address the underlying communication-
computation imbalance nor alter data partitioning strategies
within tensor-parallel schemes. Hence, their benefits remain
limited under severe hardware asymmetry.

D. 2D TENSOR PARALLELISM AND ITS STRUCTURAL
CONSTRAINTS
Recently, 2D tensor parallelism has emerged as a promising
technique for further reducing communication overhead
by partitioning model weights and activations across two
dimensions [12], [13], [14]. Compared to 1D methods,
2D parallelism significantly mitigates communication costs
and improves scalability. However, existing 2D frame-
works typically assume symmetric and uniform hardware
configurations, including balanced GPU counts and equal

FIGURE 4. Overview of AsymGroup capability abstraction and asymmetric
group formation.(a) Distribution of GPUs across nodes. (b) Proportional
partitioning of input data based on node capabilities.
(c) Capability-driven asymmetric grouping of nodes. (d) Capability-aware
point-to-point communication between groups.

compute/network bandwidths. Such rigid assumptions
restrict their applicability to realistic deployments character-
ized by uneven GPU distributions and hardware imbalances.
In asymmetric environments, static and uniform partitioning
often lead to severe communication bottlenecks and resource
underutilization. Thus, there is a clear need for a more
general tensor parallelism framework that can accommodate
heterogeneous device capabilities without sacrificing the
benefits of 2D parallelism.

In this study, we directly addressed this challenge by
introducing AsymGroup, a flexible and capability-aware
tensor parallelism framework suitable for heterogeneous
computing environments, as detailed in the following section.

V. AsymGroup
This section introduces AsymGroup, which is a novel
tensor-parallel framework designed for scalable inference
in heterogeneous GPU environments. Unlike conventional
2D tensor-parallel methods, which typically assume uni-
form GPU counts per node and balanced communication
paths, AsymGroup explicitly accommodates both node- and
GPU-level asymmetries by (i) abstracting heterogeneous
hardware into logical capability units, and (ii) proportionally
distributing computational and communication workloads
across unevenly sized groups. This strategy preserves the
structural simplicity and inherent efficiency of traditional
2D tensor parallelism, while generalizing its applicability to
realistic, non-uniform deployments.

Section V-A details the capability abstraction method-
ology and the principles of asymmetric group formation.
Section V-B elaborates on the execution pipeline, cov-
ering intergroup communication, local computation, and
aggregation of results. Finally, Section V-C presents a
formal cost model to quantify the communication overhead
along with an optimization algorithm for automated group
assignment.
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FIGURE 5. AsymGroup’s three-stage pipeline–intergroup all-gather, linear
computation, and intragroup reduce-scatter–applied to the two
sub-blocks within each transformer decoder block.

A. OVERVIEW OF AsymGroup
1) LOGICAL CAPABILITY MODELING
AsymGroup begins by abstracting the GPUs within each
physical node into a single logical node and assigning it
a relative capability score denoted by cn. This capability
measure encapsulates the total computational power of a
node by accounting for both the number of GPUs and
their individual performance characteristics. The total system
capability, defined as Csystem =

∑
n cn, serves as the basis for

proportionally allocating computational and communication
workloads across the distributed system.

For instance, in a system with five nodes containing GPUs
arranged as [1, 1, 2, 3, 3], as depicted in Fig. 4(a), each node
receives a corresponding capability value. Then, global input
batch B is partitioned proportionally among these nodes
according to their capability scores, as shown in Fig. 4(b).
Specifically, the batch size (Bn) assigned to an arbitrary
node (n) is defined as Bn = B · cn/Csystem.

This capability-based abstraction facilitates the early
identification of potential performance bottlenecks and
ensures balanced load distribution decisions across both
computational and communication tasks.

2) ASYMMETRIC GROUPING STRATEGY
Conventional 2D tensor parallelism typically assumes uni-
form device groupings, resulting in fixed-size row and
column partitions regardless of the actual hardware capability
distributions. In contrast, AsymGroup adopts an approach to
grouping based on aggregated node performance rather than
the number of nodes.

Fig. 4(c) illustrates this principle, where five nodes with
capabilities of [1, 1, 2, 3, 3] are divided into two groups:
Group A, aggregating a total capability of 4 (1 + 1 + 2),
and Group B with a total capability of 6 (3 + 3). This
capability-driven grouping method ensures proportionally
balanced computation and communication loads, thereby
improving communication efficiency and resource utilization
within heterogeneous GPU clusters.

3) HIERARCHICAL CAPABILITY MAPPING
The capability-abstraction model naturally extends from
internode to intranode scenarios. Within a single node, each
GPU can be similarly treated as an independent logical unit
with its own distinct capability. Although the subsequent

FIGURE 6. Execution pipeline of AsymGroup.(a) Capability-based
proportional partitioning of input batches across nodes. (b) Two-level
weight partitioning: intergroup (column-wise) and intragroup (row-wise).
(c) Capability-aware intragroup reduce-scatter to redistribute partial
results. (d) Final outputs proportionally match each node’s capability,
ensuring balanced workloads.

discussion predominantly addressed internode communica-
tion, the same capability-based partitioning and workload
distribution logic also applies within the nodes, ensuring
methodological consistency. For example, the capability
vector [1, 1, 2, 3, 3] represents either multiple nodes with
differing GPU counts or individual GPUs within a single
node exhibiting heterogeneous performance characteristics.
This hierarchical, unified abstraction allows AsymGroup to
seamlessly manage both intra and internode heterogeneity.

B. EXECUTION FLOW UNDER AsymGroup
Building on the formulation presented in Section V-A,
AsymGroup generalizes the 2D tensor parallel execution
pipeline into three distinct stages: (i) intergroup all-gather,
(ii) group-wise linear computation, and (iii) intragroup
reduce-scatter.

As illustrated in Fig. 5, each transformer decoder block
consists of two sub-blocks, one containing the self-attention
layer and the other the feedforward layer with GeLU
activation. Each sub-block includes two linear operations,
and every linear layer is wrapped with one all-gather and
one reduce-scatter. As a result, each decoder block performs
four all-gather and four reduce-scatter operations per forward
pass.

This section details the communication and computa-
tion mechanisms employed at each stage, highlighting
how AsymGroup effectively mitigates bottlenecks through
capability-aware load balancing.

1) INTERGROUP ALL-GATHER
In traditional 2D tensor parallelism, each computational
group must gather complete input data prior to the local
computation. Similarly, AsymGroup initiates an intergroup
all-gather to exchange input data among groups. However,
heterogeneous group sizes make conventional collective
communication strategies inefficient owing to two primary
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issues [26]: (i) load imbalance caused by uneven data
volumes, and (ii) inefficient bandwidth utilization during
broadcasts.

To mitigate these problems, AsymGroup replaces con-
ventional collective operations with explicit capability-aware
point-to-point communications. Each group calculates the
send and receive data volumes proportionally based on
capability ratios and transmits only the necessary data slices
directly to each receiving group.

As illustrated in Fig. 4(d), if Group B sends 12 items
to Group A, which consists of nodes with capabilities
[1, 1, 2], then the data are proportionally partitioned into
slices of [3, 3, 6]. Conversely, if Group A transmits eight
items to Group B, which is composed of nodes with equal
capabilities [3, 3], the data are evenly divided into [4, 4].
This capability-aware slicing ensures balanced workloads
and bounds the communication latency using the slowest
communication path, thereby significantly alleviating poten-
tial bottlenecks.

2) GROUP-WISE LINEAR COMPUTATION
Following input synchronization, each group independently
performs local linear computations. To ensure computational
balance, AsymGroup proportionally partitions the global
weight matrix among the groups according to their aggre-
gated capabilities.

Fig. 6(b) demonstrates this strategy: the global weight
matrix is first partitioned column-wise between groups in
proportion to each group’s total capability. For example,
given two groups—Group A and Group B, with capabilities
cA = 4 and cB = 6, the weight matrix is split in a 4:6 ratio.
Within each group, the assigned weight block is further

partitioned row-wise among the individual nodes based on
their relative capabilities. Each node subsequently performs
local matrix multiplication using its allocated input shard
and corresponding weight slice. This ensures that every
node handles computational workloads proportional to its
performance capability, thereby maximizing utilization and
efficiency.

3) INTRAGROUP REDUCE-SCATTER
After completing the local linear computations, the nodes
within each group hold partial output sums, which must
be aggregated to form the final results. This aggregation
step was executed via an intragroup reduce-scatter operation,
redistributing the partial results based on node capabilities.

Each node identifies and transmits data elements outside
its final assigned range to other nodes within the same
group, while simultaneously receiving data elements within
their own range from peer nodes. The volume of data
exchanged is determined explicitly by performance-based
proportional allocation. For instance, as shown in Fig. 6(c),
node 0 in Group A transmits six of its eight items, whereas
node 2 transmits only four items, reflecting their respective
capabilities. Group B, with uniformly capable nodes, evenly
exchanged data items.

FIGURE 7. Communication bottleneck modeling in
AsymGroup.(a) Ring-based intergroup All-Gather: Each group forwards
received data to its neighbor in circular order until all data is shared.
Latency is dominated by the group with the highest communication load.
(b) Ring-based intragroup Reduce-Scatter: Each node sends data not
assigned to itself. Lower-capability nodes may transmit more data and
become bottlenecks.

Fig. 6(d) illustrates that, following this redistribution
phase, each node holds a final output proportional to its
original capability. This consistent capability-based partition-
ing strategy maintains balanced workloads throughout all the
stages of computation and communication. Consequently, the
critical communication path latency remains governed by
the node with the heaviest communication load, effectively
bounding the overall performance overheads.

C. GROUP OPTIMIZATION STRATEGY
Although AsymGroup provides flexible group formation
through capability-aware partitioning, the choice of group
assignments significantly affects the overall communication
efficiency. This section introduces a detailed cost model for
quantifying communication bottlenecks during both inter-
group and intragroup phases, and describes an optimization
algorithm designed to minimize the total communication cost
through strategic node-group allocation.

1) PROBLEM FORMULATION
Consider a distributed system comprising N nodes, indexed
by n = 0, 1, . . . ,N − 1, where each node is assigned a
computational capability cn. These N nodes are partitioned
into k disjoint groups, denoted as G0,G1, . . . ,Gk−1, where
1 ≤ k ≤ N . Each node belongs to exactly one group, and
no node is shared between groups. For an arbitrary group
Gt , the total capability of each group CGt and the overall
system capability Csystem are defined as CGt =

∑
n∈Gt cn and

Csystem =
∑k−1

t=0 CGt , respectively.
The optimization goal is to determine the assignment of

nodes to groups (Gt ) that minimizes the total communication
cost across both intergroup and intragroup operations.

2) INTERGROUP ALL-GATHER COST
As illustrated in Fig. 7(a), AsymGroup employs a ring-
based all-gather protocol among groups, where a total of
k−1 communication steps are performed to ensure complete
data exchange. During each communication step s, the group
Gt forwards the data from the originating group Gt−s to its
clockwise neighbor Gt+1. The transmitted data volume at
each step is BGt−s , and the communication cost is dominated
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by the most heavily loaded node involved in the transfer,
either the sender or receiver. Formally, this step-wise cost is
expressed as:

Costs = max
t∈{0,...,k−1}

(
BGt−s · max

{
cmax(Gt )
CGt

,

cmax(Gt+1)
CGt+1

})
. (2)

Summing this expression across all communication steps,
the total intergroup all-gather communication cost becomes

Costall-gatherintergroup =

k−2∑
s=0

Costs. (3)

Equation (3) indicates that communication costs increase
owing to group capability imbalance and the presence of
nodes with disproportionately high workloads.

3) INTRAGROUP REDUCE-SCATTER COST
After completing the linear computations, the nodes perform
an intragroup reduce-scatter operation to aggregate the partial
results (Fig. 7(b)). Here, the node with the smallest capability
within each group must redistribute the largest proportion of
data to achieve capability-aligned outputs, thereby becoming
a critical performance bottleneck. Thus, the intragroup
communication cost is defined as:

Cost reduce-scatterintragroup = B · max
t

(
CGt − cmin(Gt )

Csystem

)
. (4)

4) TOTAL COMMUNICATION COST
The overall communication overhead for asymmetric group-
ings is the sum of the intergroup and intragroup costs defined
in (3) and (4), respectively, and can be expressed as:

Costasymmetric
total = Costall-gatherintergroup + Cost reduce-scatterintragroup . (5)

The total cost is bounded by the nodes that experience the
highest communication load at any stage.

5) REDUCTION TO SYMMETRIC CONFIGURATIONS
Our model generalizes to heterogeneous settings but reduces
cleanly under symmetric configurations in which all nodes
have identical capabilities. Let g denote the total number of
GPUs in a system. Under symmetric conditions described (6),

CGt =
Csystem

k
, cn =

Csystem

g
(6)

the total cost derived in (5) simplifies to:

Costsymmetric
total =

B
g

·

(
(k − 1) +

(g
k

− 1
))

. (7)

Equation (7) matches the conventional 2D tensor paral-
lelism cost model shown in (1). Therefore, our asymmetric
communication model naturally generalizes the symmetric
2D tensor parallelism as a special case.

6) GROUP OPTIMIZATION ALGORITHM
Given the formulated cost model, we propose an optimization
algorithm to minimize the communication overhead through
strategic node assignment to groups.

a: OBJECTIVE
We aim to partition the nodes into k groups ({G0, . . . ,Gk−1})
to minimize the total asymmetric communication cost. The
minimization objective defined in Equation (8) corresponds
to the total cost described in (5), and can be formally
expressed as:

min
{Gt }

(
k−2∑
s=0

Costs + B · max
t

(
CGt − cmin(Gt )

Csystem

))
. (8)

The first term in (8) addresses intergroup communication
imbalance, ensuring that no single link or node is excessively
burdensome. The second term addresses the intragroup load
imbalance and optimizes the distribution of computational
workloads within each group. Considering (2) and (4),
reducing one component can inadvertently increase the other;
thus, balancing both is critical to achieve overall efficiency.

b: OPTIMIZATION PROCEDURE
We implement a greedy reassignment strategy that iteratively
improves the initial node assignment:

1) Initialization: Nodes are initially sorted by their capa-
bilities and evenly assigned to k groups to approximate
balanced capabilities:

CGt ≈
Csystem

k
, cmin(Gt ) ≈ cmax(Gt ).

2) Iterative Reassignment:
• Identify the group Gt∗ that contributes most
significantly to the total cost in (8).

• Select the node n∗
∈ Gt∗ whose reassignment

would most reduce this dominant cost.
• Move node n∗ to the target group Gt ′ such that the
overall cost increases minimally, maintaining an
approximate capability balance.

3) Termination: The algorithm concludes that the further
reassignment of any single node no longer reduces the
total cost.

c: SCALABILITY AND EXTENSIONS
The algorithm has an iteration complexity of O(N · k)
and typically converges rapidly. Furthermore, it can readily
incorporate additional system-specific constraints, such as
network topology, memory limits, or scheduling preferences,
by extending the cost function in (8). Given its modular
nature, our approach is suitable for both static offline
planning and dynamic runtime reconfiguration.

VI. EVALUATION
This section presents a quantitative evaluation of the
performance of the proposed AsymGroup framework for
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FIGURE 8. Comparison of communication times across varying node
counts for Megatron, AutoDDL, and AsymGroup. As node count increases,
traditional 2D tensor parallelism suffers from non-factorizable
configurations. In contrast, AsymGroup flexibly adapts, achieving up to
63.5% lower communication overhead compared to Megatron, and 33.4%
lower overhead compared to AutoDDL on average.

TABLE 1. System configurations S–16 used for evaluation.

various heterogeneous GPU configurations. Specifically,
we investigated its effectiveness in reducing the total com-
munication volume, alleviating communication bottlenecks,
and enhancing the model inference latency. Comparative
analyses of the baseline methods demonstrated the efficiency,
scalability, and general applicability of AsymGroup.

A. EVALUATION SETUP
We conducted experiments in a simulated cluster environ-
ment using closely modeling servers equipped with NVIDIA
A100 GPUs. The number of nodes was varied from one
to 64, with each node containing either one or two GPUs.
GPUs within each node communicated via NVLink, pro-
viding 600 GB/s bidirectional bandwidth and 50 ns latency,
whereas internode communication occurred over simulated
network links offering 200 GB/s bidirectional bandwidth
and 200 ns latency. This setup mirrors the hardware
characteristics of DGX A100 systems realistically, enabling
accurate assessments of communication performance under
realistic conditions.

Evaluations were performed using large-scale language
models with parameter counts of 175 billion (GPT-175B) and
530 billion (MT-530B). All the experiments utilized FP16
precision and a fixed batch size of 200. The input sequence
length was fixed at 128 tokens, with output sequence lengths
varying between 128, 512, and 2048 tokens depending on the
experiment.

We note that LLaMA and similar mid-sized models
typically fit within a single or dual-GPU setup (e.g., A100),
and do not require tensor parallelism for inference, making

them less relevant to the objectives of this study. Conversely,
larger models beyond MT-530B demand significantly more
hardware resources, which introduces challenges in main-
taining experimental fairness. The two selected models—
GPT-175B and MT-530B—thus provide a practical and
representative range of model scales to observe performance
trends across varying parallelization demands.

B. BASELINES AND METRICS
We compared the proposed AsymGroup framework with two
state-of-the-art baseline methods.

• Megatron-LM [7]: Tensor parallelism with all-reduce
communication, integrating FlexReduce [15] to opti-
mize heterogeneous communication paths.

• AutoDDL [13]: Automatic 2D tensor parallelization
framework that equally partitions input data among
nodes, regardless of their GPU count.

Two primary evaluation metrics are considered.
1) Total communication volume: Assessed across vary-

ing node counts to quantify the reductions in commu-
nication overhead.

2) Inference latency: Measured under diverse GPU dis-
tributions per node, varying model sizes, and different
output sequence lengths, to evaluate practical inference
efficiency.

These metrics collectively demonstrate whether Asym-
Group effectively mitigates communication bottlenecks and
sustains high inference performance in asymmetric GPU
environments.

C. NODE COUNT SENSITIVITY
To evaluate scalability, we varied the number of nodes
from 1 to 64, assigning exactly one GPU per node to isolate
communication performance. Communication volumes were
measured for FlexReduce-enhanced Megatron, AutoDDL,
and AsymGroup. In addition, an ideal 2D tensor parallel
configuration arranged in

√
n×

√
n grid was included as the

theoretical performance bound.
As shown in Fig. 8, AutoDDL achieved an average com-

munication volume reduction of 45.1% relative to Megatron.
AsymGroup further improved performance, reducing com-
munication volume by an additional 33.4% over AutoDDL,
corresponding to an overall reduction of 63.5% compared
to Megatron. Notably, AsymGroup maintained robust per-
formance even for node counts lacking straightforward
grid factorization. For instance, at 38 nodes, AutoDDL
is constrained to a rigid 2 × 19 structure. In contrast,
AsymGroup formed six groups that approximated a

√
38

configuration, effectively balancing loads and eliminating
bottlenecks.

This flexibility becomes especially beneficial when the
node count cannot be evenly factored into a 2D grid.
AutoDDL’s performance fluctuates under such conditions
due to rigid group formation, while AsymGroup adapts
to available capability distributions, resulting in more
consistent gains. These results underscore the importance
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FIGURE 9. Inference latency across heterogeneous GPU configurations (S0–16) under varying sequence lengths (128, 512, 2048) and model scales
(GPT-175B and MT-530B). AutoDDL experiences significant latency degradation under asymmetric GPU distributions due to load imbalance and
underutilization. Conversely, AsymGroup consistently achieves balanced workloads and provides up to 26.3% lower inference latency in highly
asymmetric settings.

of structure-agnostic group formation in large-scale deploy-
ments, highlighting AsymGroup’s robustness under topolog-
ically constrained settings.

D. PERFORMANCE SENSITIVITY TO VARYING GPU
COUNTS PER NODE
Next, we examined the performance under varying GPU
counts per node, fixing the total number of nodes at 16 and
varying GPU distributions from 16 to 32 GPUs, as detailed
in Table 1. Intermediate configurations (e.g., S6 with six
nodes containing two GPUs and 10 nodes with one GPU)
represent practical scenarios involving hardware asymmetry
without rigid tensor partitions.

Inference latency was evaluated for sequence lengths of
128, 512, and 2048 tokens for the GPT-175B and MT-530B
models, respectively, and the results were normalized against
Megatron+FlexReduce.

As illustrated in Fig. 9(a)-(c), AutoDDL suffers from sig-
nificant GPU underutilization in asymmetric configurations
(S0–S8). For instance, with 128-token sequences, AutoDDL
reduced latency by 28.3% compared to Megatron in the
symmetric S0 configuration, but only 13.3% in S8. This
decline stems from AutoDDL’s rigid group formation, which
fails to allocate work efficiently across heterogeneous nodes.
Its performance improved substantially beyond S10, peaking
at 35.3% improvement in fully symmetric S16, where static
2D partitions align well with the hardware layout.

By contrast, AsymGroup flexibly utilizes all GPUs
by adaptively shaping tensor partitions based on actual
hardware capabilities. While it incurred a slightly higher
latency (3.8%) than AutoDDL in the mildly asymmetric
S2 scenario, its design becomes increasingly advantageous

as asymmetry grows. For example, in S10, AsymGroup
achieved up to 17.5% better performance, effectively dis-
tributing computation and minimizing idle GPU cycles.
In the symmetric S16 case, both approaches converged to
similar performance, suggesting that AsymGroup does not
compromise efficiency even in ideal hardware conditions.

As the sequence length increases, attention compu-
tation dominates, reducing the relative impact of the
communication overhead. Thus, the latency gap between
AutoDDL and AsymGroup narrowed for longer sequences
(2048 tokens). Still, AsymGroup maintained a 20% advan-
tage in the highly asymmetric S8 case, highlighting the
importance of capability-aware workload partitioning espe-
cially when computation-to-communication ratio shifts with
larger inputs.

As shown in Fig. 9(d)-(f), similar trends appear for
MT-530B, whose heavier matrix multiplications further
penalize inefficient computation allocation. AutoDDL expe-
rienced up to 15.7% worse latency than Megatron at
2048 tokens under S8, as its imbalance exacerbated
stalls and idle time. Conversely, AsymGroup consistently
improved the performance by 10.2% (S2) and reached up
to 25.2% improvement in fully symmetric S16 with shorter
sequences.

These results collectively demonstrate that AsymGroup
maintained consistent advantages across a diverse range of
practical hardware and workload configurations. Based on
the observed performance trends, AsymGroup is expected
to remain effective even under broader variations in model
architectures and system heterogeneity, particularly in envi-
ronments which communication latency is the dominant
performance bottleneck.
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VII. CONCLUSION
This study introduced AsymGroup, a novel tensor parallelism
framework specifically designed to address inherent hard-
ware heterogeneity in modern HPC and cloud computing
environments. AsymGroup generalizes conventional 2D
tensor parallelism by dynamically forming groups based on
the GPU count and computing performance, and proportion-
ally distributing both the computation and communication
workloads. To optimize group configurations systematically,
we formulate an analytical communication cost model that
accurately identifies and quantifies bottlenecks across nodes
and individual GPUs.

Experimental evaluations of clusters with up to 64 nodes
demonstrate that AsymGroup significantly reduces com-
munication overhead compared to existing state-of-the-art
frameworks. Specifically, it achieved an average com-
munication time reduction of up to 63.5% relative to
Megatron and 33.4% relative to AutoDDL, which is a
representative 2D tensor parallel baseline. Furthermore,
in realistically heterogeneous scenarios the number of GPUs
per node varies—AsymGroup reduces the inference latency
by up to 35.3% and 26.3% over Megatron and AutoDDL,
respectively. Crucially, AsymGroup maintains consistent
performance advantages even in situations where traditional
mesh-based partitioning strategies fail owing to structural
constraints, thereby highlighting its broad applicability and
robustness.

We believe that AsymGroup represents an important
advancement toward more efficient, scalable, and flexible
LLM inference, enabling better resource utilization and per-
formance in increasingly diverse computing infrastructures.

While AsymGroup demonstrates strong inference perfor-
mance, extending it to training workloads remains an impor-
tant direction. Training introduces additional challenges such
as gradient synchronization and optimizer state updates,
which may present new bottlenecks. However, because both
inference and training are fundamentally dominated by linear
operations and follow similar computational pipelines, the
three-stage design of AsymGroup can be adapted naturally
for training with further refinement.

Another limitation arises under scenarios with extreme
capability imbalance, where proportional slicing may incur
excessive communication overhead without corresponding
computational benefit. Exploring heuristic or adaptive par-
titioning strategies may improve the performance in such
cases by selectively tolerating the computation imbalance.
Lastly, evaluating AsymGroup on a broader range of LLMs,
including encoder-decoder models and sparse or quantized
variants—would further validate its generality and reveal
additional challenges in production-scale deployments.

REFERENCES
[1] OpenAI et al., ‘‘GPT-4 technical report,’’ 2023, arXiv:2303.08774.
[2] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,

B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, ‘‘LLaMA: Open and efficient foundation
language models,’’ 2023, arXiv:2302.13971.

[3] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper,
Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti, E. Zhang, R. Child,
R. Yazdani Aminabadi, J. Bernauer, X. Song, M. Shoeybi, Y. He,
M. Houston, S. Tiwary, and B. Catanzaro, ‘‘Using DeepSpeed and
megatron to train megatron-turing NLG 530B, a large-scale generative
language model,’’ 2022, arXiv:2201.11990.

[4] X. Ren, P. Zhou, X. Meng, X. Huang, Y. Wang, W. Wang, P. Li, X. Zhang,
A. Podolskiy, G. Arshinov, A. Bout, I. Piontkovskaya, J. Wei, X. Jiang,
T. Su, Q. Liu, and J. Yao, ‘‘PanGu-

∑
: Towards trillion parameter language

model with sparse heterogeneous computing,’’ 2023, arXiv:2303.10845.
[5] J. Lin, A. Yang, J. Bai, C. Zhou, L. Jiang, X. Jia, A. Wang, J. Zhang, Y. Li,

W. Lin, J. Zhou, and H. Yang, ‘‘M6–10T: A sharing-delinking paradigm for
efficient multi-trillion parameter pretraining,’’ 2021, arXiv:2110.03888.

[6] Z. Li, S. Zhuang, S. Guo, D. Zhuo, H. Zhang, D. Song, and I. Stoica,
‘‘Terapipe: Token-level pipeline parallelism for training large-scale
language models,’’ in Proc. Int. Conf. Mach. Learn., 2021, pp. 6543–6552.

[7] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, ‘‘Efficient large-scale language model
training on GPU clusters using megatron-LM,’’ in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., New York, NY, USA, Nov. 2021,
pp. 1–14.

[8] M. Shoeybi,M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,
‘‘Megatron-LM: Training multi-billion parameter language models using
model parallelism,’’ 2019, arXiv:1909.08053.

[9] A. Bambhaniya, R. Raj, G. Jeong, S. Kundu, S. Srinivasan,
S. Subramanian, M. Elavazhagan, M. Kumar, and T. Krishna,
‘‘Demystifying AI platform design for distributed inference of next-
generation LLM models,’’ 2024, arXiv:2406.01698.

[10] Z. Cai, Z. Liu, S. Maleki, M. Musuvathi, T. Mytkowicz, J. Nelson, and
O. Saarikivi, ‘‘Synthesizing optimal collective algorithms,’’ in Proc. 26th
ACM SIGPLAN Symp. Princ. Pract. Parallel Program., New York, NY,
USA, Feb. 2021, pp. 62–75.

[11] Y. Zhuang, H. Zhao, L. Zheng, Z. Li, E. P. Xing, Q. Ho, J. E. Gonzalez,
I. Stoica, and H. Zhang, ‘‘On optimizing the communication of model
parallelism,’’ in Proc. Mach. Learn. Syst., Jan. 2022, pp. 526–540.

[12] Q. Xu and Y. You, ‘‘An efficient 2D method for training super-large deep
learning models,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
(IPDPS), May 2023, pp. 222–232.

[13] J. Chen, S. Li, R. Guo, Y. Jinhui, and T. Hoefler, ‘‘AutoDDL: Automatic
distributed deep learning with near-optimal bandwidth cost,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 35, no. 8, pp. 1331–1344, May 2024.

[14] S. Li, H. Liu, Z. Bian, J. Fang, H. Huang, Y. Liu, B. Wang, and Y. You,
‘‘Colossal-AI: A unified deep learning system for large-scale parallel
training,’’ 2021, arXiv:2110.14883.

[15] J. Lee, I. Hwang, S. Shah, and M. Cho, ‘‘FlexReduce: Flexible all-reduce
for distributed deep learning on asymmetric network topology,’’ in Proc.
57th ACM/IEEE Design Autom. Conf. (DAC), Jul. 2020, pp. 1–6.

[16] W. Won, M. Elavazhagan, S. Srinivasan, S. Gupta, and T. Krishna,
‘‘TACOS: Topology-aware collective algorithm synthesizer for distributed
machine learning,’’ in Proc. 57th IEEE/ACM Int. Symp. Microarchitecture
(MICRO), CA. Los Alamitos, CA, USA: IEEE Computer Society,
Nov. 2024, pp. 856–870.

[17] Q. Zhou, Q. Anthony, L. Xu, A. Shafi, M. Abduljabbar, H. Subramoni,
and D. K. D. Panda, ‘‘Accelerating distributed deep learning training
with compression assisted allgather and reduce-scatter communication,’’
in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2023,
pp. 134–144.

[18] A. Shah, V. Chidambaram, M. Cowan, S. Maleki, M. Musuvathi,
T. Mytkowicz, J. Nelson, O. Saarikivi, and R. Singh, ‘‘TACCL: Guiding
collective algorithm synthesis using communication sketches,’’ in Proc.
20th USENIX Symp. Networked Syst. Design Implement. (NSDI 23),
Jan. 2021, pp. 593–612.

[19] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, ‘‘Collective
communication: Theory, practice, and experience,’’Concurrency Comput.,
Pract. Exper., vol. 19, no. 13, pp. 1749–1783, Sep. 2007.

[20] R. Thakur and W. D. Gropp, ‘‘Improving the performance of collective
operations in mpich,’’ in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, J. Dongarra, D. Laforenza, and S. Orlando,
Eds., Berlin, Germany: Springer, 2003, pp. 257–267.

[21] G. Wang, S. Venkataraman, A. Phanishayee, J. Thelin, N. Devanur, and
I. Stoica, ‘‘Blink: Fast and generic collectives for distributed ML,’’ 2019,
arXiv:1910.04940.

VOLUME 13, 2025 11



K. T. Kim et al.: AsymGroup: Asymmetric Grouping and Communication Optimization for 2D Tensor Parallelism

[22] C.-H. Chu, P. Kousha, A. A. Awan, K. S. Khorassani, H. Subramoni, and
D. K. D. K. Panda, ‘‘NV-group: Link-efficient reduction for distributed
deep learning on modern dense GPU systems,’’ in Proc. 34th ACM Int.
Conf. Supercomputing, New York, NY, USA, Jun. 2020, pp. 1–12.

[23] C. Chen, X. Li, Q. Zhu, J. Duan, P. Sun, X. Zhang, and C. Yang, ‘‘Centauri:
Enabling efficient scheduling for communication-computation overlap
in large model training via communication partitioning,’’ in Proc. 29th
ACM Int. Conf. Architectural Support Program. Lang. Operating Syst.,
New York, NY, USA, Apr. 2024, pp. 178–191.

[24] G. Ravindran and M. Stumm, ‘‘A performance comparison of hierarchical
ring- and mesh-connected multiprocessor networks,’’ in Proc. 3rd Int.
Symp. High-Perform. Comput. Archit., 1997, pp. 58–69.

[25] X. Luo, W. Wu, G. Bosilca, Y. Pei, Q. Cao, T. Patinyasakdikul,
D. Zhong, and J. Dongarra, ‘‘HAN: A hierarchical AutotuNed collective
communication framework,’’ in Proc. IEEE Int. Conf. Cluster Comput.
(CLUSTER), Sep. 2020, pp. 23–34.

[26] S. Zhang, L. Diao, C. Wu, Z. Cao, S. Wang, and W. Lin, ‘‘HAP: SPMD
DNN training on heterogeneous GPU clusters with automated program
synthesis,’’ in Proc. 19th Eur. Conf. Comput. Syst., New York, NY, USA,
Apr. 2024, pp. 524–541.

KI TAE KIM received the B.S. degree in electrical
and electronics engineering from Yonsei Univer-
sity, Seoul, South Korea, in 2017, where he is
currently pursuing the Ph.D. degree in electrical
and electronics engineering.

His research interests include flash memory
applications, processing-in-memory, and high per-
formance system architectures.

SEOK-JU IM received the B.S. degree in electrical
and electronics engineering from Yonsei Univer-
sity, Seoul, South Korea, in 2023, where he is
currently pursuing the integrated M.S. and Ph.D.
degree in electrical and electronics engineering.

His research interests include memory systems,
processing-in-memory, and AI accelerator.

EUI-YOUNG CHUNG (Member, IEEE) received
the B.S. and M.S. degrees in electronics and com-
puter engineering from Korea University, Seoul,
South Korea, in 1988 and 1990, respectively, and
the Ph.D. degree in electrical engineering from
Stanford University, CA, USA, in 2002.

From 1990 to 2005, he was a Principal Engineer
with the SoC Research and Development Center,
Samsung Electronics, Yongin, South Korea. He is
currently a Professor with the School of Electrical

and Electronics Engineering, Yonsei University, Seoul. His research interests
include system architecture, bio-computing, and VLSI design, including all
aspects of computer-aided design with the special emphasis on low-power
applications, and flash memory applications.

12 VOLUME 13, 2025


